知识图谱成功落地的挑战与困难

作者:AI小吏 1251文章阅读时间:3分钟

文章摘要:实际应用过程中,知识图谱在落地中会出现很多挑战与困难,而其实知识图谱落地出现的困难正是由于厂商与用户在构建“一核两翼”能力过程中出现问题,典型挑战与困难可以归纳为“数据不精、业务不专、技术不强、配合不畅”。

沃丰科技

实际应用过程中,知识图谱在落地中会出现很多挑战与困难,而其实知识图谱落地出现的困难正是由于厂商与用户在构建“一核两翼”能力过程中出现问题,典型挑战与困难可以归纳为“数据不精、业务不专、技术不强、配合不畅”。

技术不强

知识图谱在应用的过程中,针对算法模型的封装、智能推理、搜索推荐、智能问答等多应用环节都存在一定的技术壁垒。同时,由于不同行业场景的需求不同,知识图谱普遍在各行业落地过程中存在较大的定制工作量,需要厂商不断的积累产品能力才能提高产品率,降低定制量;

业务不专

业务不专的核心在于厂商理解用户需求,寻找知识图谱与业务的结合点,有效的赋能业务场景。前面几节已经多次强调业务专家以及行业知识对于知识图谱搭建的重要性;知识图谱的设计是需要业务专家的深度参与。由于不同行业、不同领域对于知识的需求天差万别,所以很难出现跨行业通用的知识图谱搭建工具。同时,知识图谱的搭建过程本身也是一个行业知识的封装过程,只有业务专家的参与,才能更好的形成真实契合行业需求的知识图谱。

数据不精

问题的核心是在部分信息化发展较缓慢的行业,行业数据整体治理水平较差,甚至部分关键数据仍未进行有效管控,需要知识图谱厂商进行合理的规划建设;但知识图谱厂商并非数据中台厂商,知识图谱厂商更强调基于有效的数据进行上层应用的建设。对于海量数据的治理工作能力有限,造成项目工期延长或适当降低项目功能预期等情况。随着各行业信息化以及数字化建设的推广,数据中台产品也将得到较好的推广,未来基于数据中台产品之上进行知识图谱建设,将有效的缓解数据不精的问题;

配合不畅

知识图谱作为一项无自身单独使用场景的底层技术,需要技术人员与业务专家以及用户方进行有效配合。知识图谱项目很难单独依靠厂商自身能力单独完成项目。在落地的过程中,业务专家与技术专家对于甲方用户需求的理解、应用场景的选择,都来源于项目实施过程中的配合。用户、业务专家与技术专家良好的配合将有效促进项目落地的使用效果。

》》点击免费试用智能知识图谱,优势一试便知

相关词条推荐:知识图谱 | 企业知识图谱 | 智能知识图谱

文章为沃丰科技原创,转载需注明来源:https://www.udesk.cn/ucm/faq/38518

ai智能知识图谱人工智能知识图谱企业知识图谱

上一篇: 下一篇:

数字化转型

知识图谱成功落地的挑战与困难的相关推荐

最新文章推荐

展开更多
 

手机登录下载

 

使用手机登录账号,免费下载白皮书

 
手机登录